MCQS

# Complex Numbers MCQS With Solution | Solve Complex Numbers MCQS

11. The value of arg(−5i) is:

A. 0◦

B. −90◦

C. 180◦

D. 270◦

12. The value of Arg(−5i) is:

A. 0◦

B. -90◦

C. 180◦

D. 270◦

13. The value of Arg(−5) is:

A. 0◦

B. 90◦

C. 180◦

D. 270◦

14. The equation of a circle with center at origin and radius 2 is:

A. |z| = 2

B. |z| = 4

C. |z| = √ 2

D. None of these

15. Which of the following is not true?

A. arg(z1z2)= arg(z1) + arg(z2)

B. Arg(z1z2)= Arg(z1) + Arg(z2)

C. zz̅= |z|2

D. arg( z1z2 )= arg(z1) – arg(z2)

16. The least value of |z1 + z2| is:

A. ||z1| + |z2||

B. ||z1||z2||

C. ||z1|/|z2||

D. ||z1| − |z2||

17. The inequality ||z1| − |z2|| ≤ |z1 + z2| ≤ |z1| + |z2| is called:

A. Triangle Inequality

B. Minkowski Inequality

C. Cauchy-Schwarz Inequality

D. Holder’s Inequality

18. The principal argument of any complex number can not be:

A. 7π/8

B. 7π/6

C. π/2

D. − π/2

19. If |z| = 2i(1 − i)(2 − 4i)(3 + i), then |z| equals:

A. 20

B. −20

C. 40

D. −40

20. z = a + ib is pure imaginary if and only if:

A. z = −z̅

B. z = z

C. z = −z

D. z = z^−1